Chapter 4
 Section 4.4

Solving Logarithmic Equations: We will use all of our rules of logarithms in order to solve equations involving a logarithm.
Ex: Solve $\log (x)+\log (x+2)=\log (6 x+1)$

Grp Ex: Solve $a) \log (x-3)=4$,
b) $\log (x)-\log (x-1)=2$ and
c) $2 \cdot \ln (x)=\ln (x+3)+\ln (x-1)$

Solving Exponential Equations: We will also use the fact the logarithms and exponentials are inverses to solve exponential equations. Ex: Find an exact answer for $6^{x}=7^{x-1}$

Grp Ex: Find the exact solutions to $a)(1.02)^{4 t-1}=5$ and b) $3^{2 x-1}=5^{x}$

Radioactive Dating: It has been found that the amount A of a radioactive substance remaining after t years is given by

$$
A=A_{0} e^{r t}
$$

where A_{0} is the initial amount present and r is the annual rate of decay. A standard measurement of the speed of decay is half-life. We can use this formula to determine the age of ancient rocks using a method known as potassium-argon dating.
Ex: There was a recent dinosaur find in Utah. Paleontologists want to estimate the age of the sauropods (type of dinosaur) by dating the volcanic debris in the surrounding rock using potassiumargon dating. The half-life of potassium- 40 is 1.31 billion years. If 92.4% of the original amount of potassium-40 is still present in the rock, the how old is the rock?

Newton's Model for Cooling: Newton found that when a cold object is surrounded by a hot object the difference between them decreases exponentially according to the formula

$$
D=D_{0} e^{k t}
$$

where D_{0} is the initial difference, k is a constant according to the objects and t is time.
Ex: A turkey with temperature of $40^{\circ} \mathrm{F}$ is moved to a $350^{\circ} \mathrm{F}$ oven. After 4 hours the internal temperature of the turkey is $170^{\circ} \mathrm{F}$. If the turkey is done when the temperature reaches $185^{\circ} \mathrm{F}$, then how much longer must it cook?

Practice: 5, 11, 21, 29, 40, 44, 48, 52, 56, 85

